Transforming the Lighting Sector With Semiconductor Lighting Technologies

Thomas Drennen
Sandia National Laboratories
Roland Haitz
Agilent Technologies
Jeffrey Tsao
E20 Communications
Sandia National Laboratories

USAEE/IAEE Annual Meetings Philadelphia, PA

Overview

- Introduction
- U.S. Lighting Demand
- Evolution of LEDs
- The LED Simulation Model (LEDSim)
- Results

Introduction

U.S. Lighting Demand, 1995

	Total Electricity Demand (Quads)	Lighting (Quads)	Lighting % of Total	Annual Growth (%)
Residential	11.4	1.3	11.4%	1.5%
Commercial	10.5	3.0	28.6%	0.1%
Industrial	11.1	0.7	6.3%	0.9%

Characteristics of Existing Lights

Lamp Type	Power	Efficiency	Lifetime
	(Watts)	(lm/W)	(hrs)
Standard Incandescent	15-250	8-19	750-2,500
Long Life Incandescent	135	12	5,000
Halogen	42-150	14-20	2,000-3,500
Compact Fluorescent	5-55	50-70	10,000
Standard Fluorescent	30-40	70-80	20,000
Mercury Vapor	40-1,000	50	29,000
Metal Halide	32-1,500	46-100	5,000-20,000
High Pressure Sodium	35-1,000	50-124	29,000

Estimated % of Lumens from High Efficient Light Sources

	% of Lumens from	
Sector	High Efficient Light	
Residential	13.0%	
Commercial	94.8%	
Industrial	94.8%	

LED Evolution

- First LED demonstrated by GE in 1962
- Monochrome applications
 - Automobile center-high mount brake lights on cars
 - » Durability & size key attributes
 - Exit signs
 - Traffic lights
 - » Directionality, durability, and power consumption key attributes
 - Outdoor display screens
 - » Durability and brightness key attributes

Monochrome Applications

Monochrome Applications (continued)

The Instant Replay Screen at Liberty Bowl Stadium in Memphis, Tennessee

Evolution of Performance and Cost of Red LEDs

Evolution of LEDs: the Future

The LED Simulation Model

- Dynamic simulation model written in Powersim
- Market diffusion using S-shaped diffusion methodology
 - Separate markets for low efficiency (incandescents, halogens) and high efficiency (fluorescents, HIDs)
 - LED efficiency a function of research investment
- Two main scenarios
 - Low investment: industry sponsored effort, driven initially by monochrome market
 - High investment: government partners with industry to create national initiative

The LED Simulation Model Structure

Market Diffusion Component

$$MP_i = \frac{k_i}{1 + \exp(-\ln 81*(t - t_i)/\Delta t)}$$

Where:

- MP_i = market diffusion for lighting type i in year t (low or high efficient)
- k_i = maximum market diffusion for lighting type i (assumed to be 50% for each type)
- t_i = year get 50% market share (tied to cumulative investment)
- delta t = time to go from 10% to 90% of maximum allowed saturation, k_i

Projected LED Efficiencies

Results, 2025

	Low Investment	High Investment
Electricity (billion kwhr)	531	404
Annual Savings	40	167
Cumulative Savings	82	1233
LED Market Share (% of delivered lumens)	16	49
Avoided Electrical Capacity (MW)	4,107	17,671
Electricity Savings (billion \$)		
Annual Savings	3	12
Cumulative Savings	6	87
Carbon Emissions (MtC)		
Annual Savings	10	41
Cumulative Savings	20	313

Results (continued)

1 = Non LED lighting, low investment case

2 = Non LED lighting, high investment case

3 = LED lighting, low investment case

4 = LED lighting, high investment case

Projected LED Prices

	Purchase Cost	Operating Costs	Total Cost
Bulb Type	(cents/klmhrs)	(cents/klmhrs)	(cents/klmhrs)
Incandescent	0.07	0.47	0.54
CFL	0.11	0.12	0.23
Fluorescent	0.01	0.09	0.10
LED 2000	0.12	0.35	0.47
LED 2010 (low invest)	0.05	0.16	0.20
LED 2020 (low invest)	0.01	0.13	0.14
LED 2010 (high invest)	0.03	0.16	0.19
LED 2020 (high invest)	0.01	0.04	0.06

klmhrs = kilolumen hours

Conclusions

- White LEDs soon will be a viable substitute for white illumination
- LED market penetration initially will be limited to low flux lighting (accent lights) followed by incandescents and eventually fluorescents
- Degree of LED penetration will be dependent on LED efficiency and price

Conclusions (continued)

- Key attributes of LEDs include:
 - durability
 - directionality
 - color control
 - small size
- In high investment case, LEDs capture 49% market share by 2025
 - 17.2 GW of installed electrical capacity
 - \$11.8 billion annual electrical savings
 - 41 million tons annual carbon avoided

